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Abstract 

The conformal structures CO(4, 0), CO(l ,  3) and C0(2,  2) are studied on a real manifold 
M, dim M = 4. On M isotropic fiber bundles E~ and E/~ are constructed. These bundles are real 

for the C0(2,  2)-structure, and they satisfy the condition E~ = E~ for the CO(l ,  3)-structure, 

and the conditions E~ = E~, E/~ = E~ for the CO(4)-structure. The tensor C of conformal 
curvature splits into two subtensors Ca and C/~ which are the curvature tensors of the bundles E~ 
and E/~, respectively. These subtensors satisfy the same conditions as the bundles Ea and E~. Con- 
formally semiflat and fiat structures and their geometrical characteristics are studied. The principal 
2-directions are defined, and conditions for their integrability are obtained. These investigations for 
the C O (1,3)-structure are connected with Petrov's classification of Einstein's spaces. 
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O. Introduction 

0.1 

Four-dimensional conformal structures play an important role in general relativity. Space- 

time in general relativity is a four-dimensional Riemannian manifold of signature (1, 3). 

Since many features of general relativity are of a conformal invariant nature, it is interesting 

to study pseudoconformal structures of signature (1, 3). Along with these kinds of conformal 

structures, on a real four-dimensional conformal structure, one also can consider conformai 

structures of signatures (4, 0) and (2, 2). By means of complexification of a manifold M, 
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all these structures can be reduced to one of them, for example, to the structure of signature 
(4, 0) or (2, 2). This was done in many investigations (see, for example, [AHS 78,Gi 83, 

P 77]). 
Unlike the previous investigations, in the present paper, we consider four-dimensional 

conformal structures on a real manifold M and study their common properties and the 

differences between them. Moreover, we also apply complexification not of the manifold 
M itself but only of its tangent spaces Tx(M), and consider in these spaces coordinate 

transformations preserving the real part of these tangent spaces. 

In the paper, we study conformal structures of signatures CO(4, 0) = CO(4),  C O ( l ,  3) 
and C O (2, 2) in a parallel way, consider their isotropic cones and construct their isotropic 

fiber bundles E,~ and E 3. These bundles are real for the CO(2, 2)-structure, and they are 
complex for the C O ( l ,  3)- and CO(4)-structures. Moreover, for the C O ( l ,  3)-structure, 

these bundles satisfy the condition Ec, = Eta, and for the CO(4)-structure, the conditions 
Ec~ = Ec~ and E¢~ ---- E~. All these structures are G-structures of first order with seven- 

parameter structure groups. 
Next, we deduce the structure equations for the CO(2,  2)-structure and compute the 

components of its tensor of conformal curvature. This tensor splits into two real subtensors 

C,~ and Ct~ which are the curvature tensors of the isotropic fiber bundles E,~ and E~. 
Complexifying appropriately the structure equations of the C O (2, 2)-structure, we also 

find the forms and the tensor of conformal curvature of C O (1, 3)- and C O (4)-structures. 

However, these forms and the tensor are complex. The tensors Ca and C~ into which the 
curvature tensor splits are connected by the condition C,~ -- C~ for the C O (1, 3)-structure, 

and by the conditions Cc~ = Ca and C 3 = C~ for the CO(4)-structure. 
The conformal structures for which the tensor C,~ or C~ vanishes are called conformally 

semiflat. If  both these tensors vanish, the structure is called conformally flat. The condi- 
tions which these tensors satisfy show that only the C O (2, 2)- and C O (4)-structures can 
be conformally semiflat, and that the C O(1, 3)-structure cannot be conformally semi flat 

without being conformally fiat. 
The curvature forms @c~ and 69~ of all four-dimensional conformal structures belong to 

eigensubspaces of the Hodge operator [H 41 ], and according to the terminology introduced 
in the paper [AHS 78], they are self-dual and anti-self-dual, respectively. By virtue of this, 

the fl-semiflat conformal structures are self-dual while the ot-semiflat conformal structures 
are anti-self-dual. Moreover, the C O (1, 3)-structure cannot be self-dual or anti-self-dual 
without being conformally fiat. 

Further, we consider two-dimensional completely isotropic submanifolds of four-dimen 
sional conformal structures. We prove that two-dimensional directions tangent to these 
submanifolds are principal, i.e. the parameters defining these directions satisfy one of 
two-fourth degree algebraic equations whose coefficients are the components of the ten- 
sors C,~ and C¢~. We establish a geometric meaning for semiflatness of four-dimensional 
conformal structures and find sufficient conditions for existence for integrable principal 
isotropic distributions on the bundles E,~ and Et~. 

Since space-time in general relativity is endowed with a conformal structure of signature 
(1, 3), we were able to find a relationship between the Petrov classification of Einstein's 
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spaces (see [Ch 83] or [PR 86]) with the structure of  principal isotropic distributions defined 

on the C O (1, 3)-structure and the integrability conditions for these distributions. 

Note also that the real theory of  four-dimensional Riemannian and pseudo-Riemannian 

metrics of  different signatures and its applications to general relativity were considered in 
the recent paper [BGPPR 94]. 

The results of  this paper were presented at the Conference on Differential Geometry 
and Its Applications (28 August-1 September, 1996; Brno, Czech Republic). Some of the 

results of  the current paper were published earlier in [A 83]. 

1. Isotropic fiber bundles 

1.1 

Let M be a real differentiable manifold of  dimension n, and g be a nondegenerate 

quadratic form of signature (p, q), p + q = n, given on M. A pair (M, g) is called a Rie- 

mannian manifold of signature (p, q), and the form g is called a Riemannian metric on M. 

For q ---- 0, this metric is proper Riemannian, and for 0 < q < n, it is pseudo-Riemannian. 

Two Riemannian metrics g and ~ are called conformally equivalent on the manifold M 
i f ~  = crg where ~r = or(x) is a smooth function on M such that or(x) -¢ 0. If ~r(x) > 0, 

then the quadratic forms g and ~ have the same signature. If ~r(x) < 0, then the quadratic 

form ~ is of  signature (q, p), 

A conformal structure on a manifold M is the collection Of all conformally equivalent 

Riemannian metrics given on M. It is denoted by CO(p ,  q). It is easy to see that the 

conformal structures CO(p ,  q) and CO(q,  p) are equivalent: CO(p ,  q) ~ CO(q,  p). 

Let Tx(M) be the tangent space to the manifold M at a point x, {ei}, i = 1 . . . . .  n, be a 

vectorial frame, and {w i } be the coframe dual to the frame {ei }: co i ( e j )  = ~ .  With respect 

to the frame {ei }, the quadratic form g can be written as follows: 

g = g i j o J o 9  J, i , j  = 1 . . . . .  n, (1.1) 

where gij are the components of  the nondegenerate symmetric metric tensor on M which 

is called the metric tensor. 

Since the form (1.1) is of  signature (p, q), then in a neighborhood of  each point x E M, 
this form can be reduced to a canonical form having p positive and q negative squares. 

The form (1.1) is invariant on the Riemannian manifold, and it is relatively invariant on the 
conformal structure. 

The conformal structure C O (p, q) is a G-structure whose structure group G is a subgroup 

of the general linear group GL(n)  of transformations of  the tangent space Tx (M). The 
transformations of  this subgroup transfer the equation 

gijo9 z o9 J = 0 ( 1.2) 

into itself. This subgroup is the direct product 

G = SO(p,  q) × t t ,  p + q = n, (I.3) 
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where SO(p ,  q) is the special pseudoorthogonal group of signature (p, q) and H = R* x Id 

is the group of homotheties of  the space Tx (M) (R* is the multiplicative group of  reals). 

Consider the complexified tangent space CTx = Tx ® C. In this space, Tx(M) is a real 

subspace, and Eq. (1.2) defines an isotropic cone Cx which can be real or imaginary. The 

group G acts in the space CTx in such a way that if ), 6 G and ~ 6 Tx(M), then 

VTx = Tx, y(~) = y(~),  y(Cx) = Cx. 

We will also consider the fibration C T ( M )  with the real base M and the complex fibers 

CTx(M), x E M. 
The assignment of a conformal structure C O (p, q) on a real manifold M is equivalent 

to the assignment of  a differentiable fibration of  isotropic cone Cx, Cx C CTx (M). 

1.2 

Consider conformal structures on a four-dimensional manifold M. There exist structures 

of  three substantially different types on such a manifold: these are the structures C O (4, 0) = 

CO(4) ,  CO(I ,  3) and CO(2,  2). 

For the CO(4)-structure, the quadratic form g can be reduced to the form 

g = (o91) 2 + (0)2) 2 -t- (0)3) 2 + (0)4)2. (1.4) 

Such a conformal structure is called a proper conformal structure or a structure of elliptic 
type. 

For the C O (1, 3)-structure, the quadratic form g can be reduced to the form 

g = (0)1)2 _ (0)2)2 _ (0)3)2 _ (0)4)2. (1.5) 

Such a conformal structure is called a structure of Lorentzian type. 

Finally, for the C O (2, 2)-structure, the quadratic form g can be reduced to the form 

g = (0)1)2 _ (0)2)2 + (0)3)2 _ (0)4)2. (1.6) 

Such a conformal structure is called a structure ofultrahyperbolic type. 

For the CO(4)-structure, the isotropic cones Cx are pure imaginary. For the C O ( I ,  3)- 

structure, they are real cones of  second order that have real rectilinear generators but do not 

have real planar generators. Finally, for the C0(2 ,  2)-structure, these cones are real cones 

of  second order that have real planar generators. 

Let us find the equations of  plane generators of  isotropic cones of  the C O (2, 2)-structure. 
To this end, we will make the real transformation of  coordinates in the space Tx (M) under 
which 

0)1 + 0)4 _...> X/~ 0)1, 0)2 + 0)3 _..> ~ /20)2  

0)1 __ 0)4 ...+ ~ /~  0)4, O92 __ 0) 3 ----> c ~  0)3. (1.7) 

Then the quadratic form g becomes 

g = 2(0)1o94 _ 0)20)3), (1.8) 
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where the forms 0)i are real. A vector ~ 6 Tr can be written as 

-:  0)i (~ )ei ,  

59 

(1.9) 

where ei are real basis vectors of the space Tx connected by the conditions: 

(ei, ei) = 0 ,  (el, e2) = (el, e3) = (e4, e2) = (e4, e3) = 0 ,  

(el, e4) = --(e2, e3) = t, 
(1.10) 

where the parentheses denote the scalar product in the space Tx, which is defined by the 

quadratic form g. The first relations in (1.10) mean that the vectors ei are isotropic. This is 

the reason that the frame formed by these vectors is called isotropic. 
The equations g = 0 of the isotropic cone Cx can be written in two different forms: 

0)1 0)2 0)1 0)3 
- -  ~. and = - / / ,  

o93 094 0)2 o94 

and the latter equations can be written in the form: 

o91 + )~0)3 = 0, 0)2 _]_ )~0)4 = 0, (1.11) 

and 

0)1 _}_//092 = O, 0)3 ..[._ //0)4 = O. (1.12) 

Eqs. ( I. 11) and (1.12) determine two families of real two-dimensional plane generators-- 

isotropic planes--of the isotropic cone Cx of CO(2, 2)-structure. The 2-planes of family 

(1.11) are called et-planes, and those of family (1.12) fl-planes. 
The parameters ,k and/z in Eqs. (1.11) and (1.12) are nonhomogeneous projective co- 

ordinates on these families, These families are homeomorphic to the real projective lines 

RP,~ and RPt~, respectively. 
It follows that the group SO(2, 2) leaving the isotropic cone Cx invariant is decomposed 

into the direct product of two groups SL(2) of projective transformations of the real lines 

RP~ and RP~. Thus, for the CO(2, 2)-structure, the structure group G is isomorphic to 

the direct product: G ~ SL(2) x SL(2) × H, where It  is the one-parameter group of 

homotheties of the space T~. Moreover, two real groups SL(2) act independently on the 

families of or- and/3-planes of the cone Cx. 
The isotropic or- and/3-planes of the C O (2, 2)-structure form two fiber bundles E,~ and 

Et~ with common base M and the or- and fl-planes of the cones Cx as their fibers. Since 

these fibers are isomorphic to the projective lines RP,~ and RP¢~, respectively, we will 
write E~ = (M, RP,~) and E¢~ = (M, RPt~) and call these fiber bundles the isotropicfiber 
bundles of the C O (2, 2)-structure. 

It follows from our consideration that on the pseudoconformal CO (2, 2)-structure the 

isotropic fiber bundles are real. 
Consider further the C O (1, 3)-structure--the conformal structure of Lorentzian type 

whose fundamental quadratic form can be reduced to the form (1.5) by means of a real 

transformation of coordinates in the space Tx. This form can be reduced to the form (1.8) 
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only by means of a complex transformation of coordinates. To this end, we must complexify 

the space Tx, i.e. to consider the space CTx. Now, by means of the complex transformation 

0)1 + 0)4 ~ ~/~0)1, 0)2 + iw3 ~ ~/~0)2, 

0)1 _ 0)4 ___+ %/2w4, 0)2 _ iw3 ~ v~0)3, (1.13) 

the quadratic form (1.5) can be reduced to the form (1.8). Moreover, the forms w I and 0) 4 

are real, and the forms w 2 and w 3 are complex conjugate forms: 

~1 _= 0)1, ~ = 0)4, ~2 = o93. (1.14) 

Since as before the tangent vector ~ ~ Tx represented by (1.9) remains real, and on the 
CO(l,  3)-structure the basis forms w i satisfy conditions (1.14), the basis vectors of  the 

complexified space CTx satisfy the relations 

el = el,  e4 = e4, e2 = e3. (1.15) 

Such a basis in the space CTx is called the tetrad of Newman-Penrose (see [Ch 83]). 
As before, the isotropic planes on the C O (1, 3)-structure are determined by Eqs. (1.11) 

and (1.12).  However, the parameters ~. and # in these equations must be now considered 

as complex nonhomogeneous coordinates on the complex lines CP,~ and CPt~. Moreover, 
the isotropic planes of  the Lorentzian structure are two-dimensional complex generators of  

the cones Cx. 
By (1.14), if in Eqs. (1.11) we replace all quantities by their conjugates, we obtain Eqs. 

(1.12), where /z  = ~. Thus, the isotropic bundles Ea = (M, CP~) and E~ = (M, CPI~) 

are complex conjugates: E~ = Ea. 
On the cone Cx of the CO(I, 3)-structure, there is a bijective correspondence between 

its or- and fl-generators, and this correspondence is determined by the condition # = ~. 
Moreover, two complex conjugate generators of  the cone Cx intersect one another along its 
real rectilinear generator. The equation of this generator can be found from Eqs. (1.11) and 

(1.12) and condition ~ = L. Solving these equations, we find that 

0)1 = ~.~0)4, 0)2 = _).0)4, 0)3 = _~0)4. 

Hence the directional vector of  the rectilinear generator can be written in the form 

= ~.~el -- ~.e2 -- ~e3 + e4. (1.16) 

By condition (1.15), this vector is real. It depends on one complex parameter or two real 
parameters. Eqs. (1.16) can be considered as the equation of the director two-dimensional 
surface of the three-dimensional cone Cx in the real space Tx (M). 

Since the isotropic fiber bundles Ea and E~ of the Lorentzian structure C O ( l ,  3) are 
complex conjugates, its structural group G can be represented as follows: 

G ~ SL(2, C) x H ~ SL(2, C) x H, 

where the groups SL(2, C) and SL(2, C) act concordantly on the fiber bundles Ea and E~. 
The group G depends on seven real parameters. 
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Finally, we consider the proper conformal structure C O (4) whose fundamental quadratic 

form can be reduced to the form (1.4) by means of  a real transformation of  coordinates. 

Complexifying the tangent space and applying the transformation 

O) 1 -k- i094 -+ W/2091 , (-O 2 + ioo 3 --+ x/2o92, 

w l  __ iw 4 --~ ~¢ /~w4 ' 092 _ iw 3 ~ _ ~ v / ~ w  3 (1.17) 

in this space, we again reduce the form g to the form (1.8). However, now all the forms O) i 

become complex forms related by the conditions 

0)4 = ~ l ,  093 = _~2 ,  (1.18) 

and the basis vectors of  the space CTx satisfy the conditions 

e4 ----el, e3 = - e 2 .  (I.19) 

As before, the parameters A and # in Eqs. (1.11) and (1.12) will be complex nonhomo- 

geneous coordinates on the complex projective lines CP,, and CPt~, and the isotropic fiber 

bundles E~, = (M, CPc,) and E/~ = (M, CP/~) are formed by complex two-dimensional 

generators of  the isotropic cones Cx. 
From Eqs. (1.18) it follows that on the proper conformal structure CO(4) ,  each of  the 

systems of  equations (1.1 1) and (1.12) remains invariant under passage to the complex 

conjugate values if the parameters A and/z undergo the following transformation: 

A --+ - l / X ,  # --+ - 1 / ~ .  (1.20) 

In view of this, the isotropic fiber bundles Ec,. and Et~ are self-conjugate: Ec, = E,,, Et~ = 

Et~. This implies that for the CO(4)-structure, the structure group G can be represented in 

the form: G = Ga x G# x H where G~ and G/~ are the groups acting on the fiber bundles 

Ea and E/~, respectively. But by condition (1.3), G~ x G/~ = S0(4), and the group S0(4) can 

be represented as the direct product S0(4) = SU(2) x SU(2). As a result, we find that for 

the CO(4)-structure, G = SU(2) x SU(2) x H, and two groups SU(2) act independently 

on the families of  or- and/%planes of  the isotropic cone Cx. 

2. The structure equations and the curvature forms of the C O (p, q)-structure 

2.1 

First, we consider the structure equations of  the conformal structure C O (p, q) of  general 
type given on amani fo ld  M of d imens ionn = p + q .  F o r q  = 0 a n d n  = p in the 

orthonormal frame, these equations were developed by Cartan as far back as 1923 (see 

[C 23]). For arbitrary p and q in the general frame, they were developed in [AK 93]. Note 

also that these equations are given in the book [Ga 89]. 
On the manifold M, in addition to the 1-form 09 = {w i } with their values in the space 

Tx(M) and defined in a first-order frame bundle, one can invariantly define a matrix 
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1-form 0 = {Oj} and a scalar 1-form x in a second-order frame bundle, and a covector 

form ~0 = {~0i} in the third-order frame bundle. Along with the tensor g = {gi j  }, these 

forms satisfy the following structure equations: 

Vg = 0, 

d o g = x A o g - - O A o g ,  

dx = -~o A to, 

dO = ~o A o9 -- 0 A 0 + (gog) A (gog - l  ) + 69, 

d~o = ~o Ate -- q9 A 0 + O. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In these formulas Vg = { d g i j  - g ikO;  --  gkjOi k }, d is the operator of  exterior differentiation, 

and A is the symbol of  exterior multiplication. In addition, in all exterior products of  l-forms 

occurring in Eqs. (2.1)-(2.5) multiplication is performed row by column: for example, a 

detailed writing of  Eq. (2.2) has the following form: 

do9 i = tc A o9i _ o j  A ¢o j . 

In Eqs. (2.1)-(2.5), the forms O and • are the curvature forms of  the conformal structure 

CO (p , q ) .  
Let us find the geometric meaning of  the 1-forms 0, x and ~0 occurring in the structure 

equations (2.1)-(2.5). To this end, we consider the restrictions of  these equations to a fiber 

of a third-order frame bundle, i.e. we will assume that in these equations o9 -- 0. Then since 

for o9 = 0, the curvature forms vanish, and Eqs. (2.3)-(2.5) take the form: 

dE = 0, dO = - 0  A/9, d~o = ~o A x - ~o A 0. (2.6) 

Eqs. (2.6) show that the form x is an invariant form of the group I-I of  homotheties that 

acts in the tangent space Tx (M). The matrix form 0 which besides Eq. (2.6) satisfies also Eq. 

(2.1) is an invariant form of the group SO(p,  q) which, as the group I-I, maps the isotropic 

cone Cx into itself. Jointly, the forms 0 and x are invariant forms of  the structural group 

G ~ S0(p, q) x H of  the conformal structure CO(p,  q). 

Next, we will clarify the geometric meaning of  the covector form ~o occurring in Eqs. 

(2.1)-(2.5). To this end, we consider compactification of  the tangent space Tx(M). This 

compactification can be constructed as follows. Since in the space Tx, the invariant cone 
Cx is fixed, this space is endowed with the structure of  the pseudo-Euclidean space R~ of  

signature (p, q). In this space, we consider a manifold of  hyperspheres defined in Cartesian 
coordinates x = {x i } by the equation 

kg(x, x) + 2h(x) + 21 = 0, (2.7) 

where g(x, x) is the quadratic form determined by the tensor g, h = {hi}  is a covector, 
h (x) = h i x  i , and k and I are scalars. The quantities k, hi  and l are homogeneous coordinates 
of  the hypersphere (2.7). These numbers can be taken as coordinates of  a point in the 

projective space Px n+ i. The compactified tangent space Tx (M), which we denote by Sx (M), 
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is identified with the submanifold of hyperspheres of zero radius. The latter submanifold is 
given in the space pn+l by the equation 

g(x ,  x)  -- 2xOx n+l = 0, (2.8) 

where x ° = k, x n+l = 1 and x = hg -1. Thus, after compactification, the tangent space 

Z~(M) is enlarged by the point at infinity y with coordinates (0, 0 . . . . .  0, 1) and by the 
isotropic cone Cy with the vertex at this point y whose equation is the same as the equation 
of the cone Cx, namely g(x ,  x)  = O. 

Thus, the compactified tangent space Sx (M)  is a hyperquadric determined by Eq. (2.8) in 
the local projective space pn+l. On this hyperquadric, the structure of a pseudoconformal 

space Cq of signature (p, q) arises, and the fundamental group of Cq is locally isomorphic 

to the group SO(n ÷ 2, q + 1). The space Cq is conformally flat, and its structure equations 
coincide with Eqs. (2.1)-(2.5) provided that 69 = 0 and • = 0 in them. In the space Cq, we 

can consider a family of frames consisting of two points x and y and linearly independent 
hyperspheres ai passing through these two points. If we denote by ( , ) the scalar product 
with respect to the quadratic form occurring in the left-hand side of Eq. (2.8), then the 

elements of these frames satisfy the equations: 

(x, x)  = (y, y) = (x, ai) = (y, ai) = 0, (2.9) 
(a i ,a j )  ---- gij ,  (x, y) = --1. 

The last two conditions are the normalization conditions which follow from Eq. (2.8). The 

equations of infinitesimal displacement of this frame have the form: 

dx -= Kx+ aw,  

da = ¢px+ aO + ( g w ) y ,  (2.10) 
d y =  a(Og I ) - x y ,  

where we denote the system of hyperspheres ai by a = {ai} .  As in Eqs. (2.1)-(2.5), in Eqs. 
(2.10) multiplication is carried out row by column. For 69 = 0 and • = 0, Eqs. (2.1)-(2.5) 

are the conditions of complete integrability of the system of differential equations (2.10). 

For more details on this see the paper [AK 93]. 
On the hyperquadric Sx (M)  which is compactification of tangent space Tx (M), the point 

x is fixed. Thus, co = 0 on Sx(M) ,  and other forms occurring in Eqs. (2.10) are invariant 
forms of the subgroup of the group SO(n + 2, q + l) that leaves invariant the point x. As Eqs. 

(2.10) show, for w = 0, the scalar form K determines the homothety of the hyperquadric 
Sx(M)  with respect to the points x and y, the matrix form 0 determines the rotation of 
this hyperquadric when the points x and y are fixed, and, finally, the form ~o determines a 
displacement of the point y on the hyperquadfic Sx (M).  

If we fix point x on the hyperquadric Sx(M) ,  we turn Sx (M)  into an n-dimensional 
pseudo-Euclidean space Rq = Sx \ Cx of signature (p, q) (we recall that n = p + q). The 
forms x, 0 and ¢p are invariant forms of the group G'  of motions of this space. We have 

G'  ~ (SO(p, q) x It)~x T(n), (2.11) 
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where T(n) is the subgroup of  translations of  the group G',  and the symbol Ix denotes the 

semidirect product. 
Eqs. (2.1)-(2.5) show that the group G t is a differential prolongation of  the original 

structure group G, and the structure itself is a differential-geometric structure of  finite type 

2 (see [K 72, p.9] or [S 64, Ch. VII, Section 3]). 

Cartan called the equations of  type (2.1)-(2.5) the equations of the normal conformal 
connection associated with the quadratic differential form (1.1) (see [C 23]). 

2.2 

Consider the curvature forms O = {Oj} and q, = {q,i} of the conformal structure 

CO(p, q). Their decompositions with respect to the basis forms are: 

o j  : CjklO) k A O) 1, (I9 i : CijktO j A (.O k. (2.12) 

The coefficients C~k t form the tensor ofconformal curvature of  the CO(p, q)-structure 

in question. They allow one to construct the invariant tensor of  conformal curvature 

Cijkl : girnC~k l , 

which also is called the Weft tensor. It satisfies the same conditions 

Cijkl = --Cji lk  = --Cij lk  = Ckli j ,  (2 .13)  

Cijk l "~ Ciklj "-1- Ciljk = O, (2.14) 

as the curvature tensor of  a Riemannian manifold, and the additional conditions 

gilCijkl  = Cjk i : 0, (2.15) 

i.e. the Weyl tensor is trace-free. Condition (2.15) distinguishes the tensor of  conformal 

curvature from the Riemannian tensor. The tensor of  conformal curvature as the Riemannian 

tensor is connected with a differential neighborhood of  third order of  the manifold M 

endowed with the CO(p, q)-structure. 

If n > 4, then the quantities Cijk occurring in Eqs. (2.12) do not form a tensor. They can 

be expressed linearly in terms of  the covariant derivatives Cijklm of the tensor of  conformal 

curvature. It follows that if n > 4 and the tensor of  conformal curvature vanishes, then also 
Cijk = 0, and the CO(p, q)-structure is conformally flat. 

3. The structure equations of the C O (2, 2)-structure 

3.1 

First, we will find the structure equations of  the group G of  the C0(2, 2)-structure. By 

means of  a real transformation of  coordinates, its fundamental form can be reduced to the 
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form ( 1.8), and its fundamental tensor has the following matrix of components: 

(gij)  = 0 0 --1 
- 1  0 " 

0 0 

This implies that Eqs. (2.1) take the following form: 

= =o4' : o ,  
0 4 = 0 3, 042 : 01 0 4 ' 3 ----02' 

O] + 0 4  = 0 ,  022 + 0  3 O. 3 = 

(3.1) 

043 =021, (3.2) 

Thus, the matrix form 0 = {Oj} has only six independent components: 0 2, 01 @, 0'  , 3 ,  0~ 
and 022 which together with the form x are invariant forms of the structure group G of the 
CO(2, 2)-structure. 

In order to find the structure equations of the group G, we consider the first two groups 
of Eqs. (2.6) taking into account Eqs. (3.2). Then we obtain: 

dx = 0, (3.3) 

d@ = (011 -1- 0 2) A 0 3, d(0? + 0 2) = 20~ A 031 , d031 = 0 13 A (0~ + 02), (3.4) 

d0 2=(0 ,1 -022  ) A 0  2, d ( 0 ~ - 0  2 ) = 2 0  2A021, d01 =021A(0~-022),  (3.5) 

Eq. (3.3) shows that for w = 0, the form x is a total differential. This form is an invariant 
form of the one-parameter group H of homotheties that sends each plane generator of the 
cone C~ of the CO(2, 2)-structure into itself. Eqs. (3.4) show that for o9 = 0, the forms 
@, 01 and 0~ + 02 are invariant forms of the three-parameter group G~ which is isomorphic 
to the group SL(2) that sends the family of t~-planes of the cone Cx into itself and keeps 
its/~-planes fixed. Similarly, it follows from Eqs. (3.5) that the forms 021 , 0 ( and 0~ - 0 2 
are invariant forms of the three-parameter group G~; the latter group is also isomorphic 
to the group SL(2), which sends the family of fl-planes of the cone Cx into itself and 
keeps its a-planes fixed. This matches the fact mentioned in Section 1 that the structure 
group G of the conformal C O (2, 2)-structure is isomorphic to the following direct product: 
G -~ SL(2) x SL(2) × H. As follows from Eqs. (2.1 1), the prolonged group G' of the 
C O (2, 2)-structure has the form 

G' ----- (SL(2) x SL(2) x H ) ~  T(4). 

3.2 

Let us find now the structure equations of the CO(2, 2)-structure. By (3.2), on the 
C 0(2,  2)-structure, Eqs. (2.2) take the form: 
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do) 2 = 

do) 3 = 

do) 4 = 
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(K--O~) A0)1 _.1_092 AO 1 n t-O) 3 AO 1, 

(K__02) A0)2_[_0)1 A 0  2 q_ 0)4 A 031, 

(K -~- 0 2 ) A 0) 3 -I- 0)1 A 0~ -'t'- 0)4 A 01 , 

(K -t-0~) A 0)4 _]_(.02 AO~ +O93 A 02 , 

can be reduced to the form: 

d0~ = ~o 1 A 0 )  3 -1-~02 A0) 4 -t'-(01 + 0 2  ) A0~ -t'-(9~, 

d(0~ + 0 2) = ~01 A 0)1 -I- ~02 A 0)2 __ 993 A 0)3 __ ~04 A 0)4, 

+2013/x 01 + (9~ + (92, 

dO~ = ~o~ A 0)' + ~o4 ,, 0)~ + o~ A (ol + o22) + o~, 

(3.6) 

(3.7) 

d0~__ , ,  ~ + , ~ 4  + ( 0 ~ -  0~) ~ 0~ + O ,  ~, 

d(0~  - 022) = ~1 A ~ 1  _ ~2  A ~ 2  + ~3 A w 3 - ~4  A o)4 

+2o,2 ~ o~ + o~ - o22. (3.8) 

dO~ = ,~ ~ 0)1 + , 4  ~ 0)3 + o~ ~ (0~ - o:2) + 0~. 

Eqs. (3.7) show that the exterior quadratic forms (0~, (9~ + 692 and (9~ are the compo- 
nents of the curvature form (ga of  the isotropic fiber bundle E~, and the forms (9~, (9 ~ - (9 2 
and (91 are the components of the curvature form (9~ of the isotropic fiber bundle Ep. 

In order to find decomposi t ions of  these curvature forms with respect to the basis forms 

0)i, we must  find independent components  of  the tensor of  conformal  curva tu re  Cijkl of  the 
conformal  C O (2, 2)-structure. 

Since the indices i, j ,  k, I take only four values 1, 2, 3, 4, it follows from Eqs. (2.13) that 

this tensor has 21 essential components  which satisfy 11 independent conditions arising 

from Eqs. (2.14) and (2.15): 

C1234 - C1324 q-- C1423 = 0, 

C1224 = C1334 = C1213 ~-- C2434 -m- 0, 

C1314 - C1323 = C1424 - C2324 = 0, (3.9) 

C1214 -{- C1223 = C1434 --I- C2334 = 0, 

C1414 = C2323 ~-- C1234 q-- CI324. 

Hence the tensor Cijkl has 10 independent components  in all. We denote them as follows: 

C1212 = ao, C1214 = a l ,  C1234 = a2, C1434 = a3, C3434 = a4, 
(3.10) 

C1313 = bo, C1314 = bl ,  C1324 = b2, C1424 = b3, C2424 = b4. 

Comput ing  the components  of  the curvature form (ga o f  the fiber bundle E~ and applying 
notations (3.10), we find that 
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(9~ = 2[a00) l A 0) 2 -ff al (0)1 A 0)4 _ 0)2 A 0)3) q_ a20)3 A 0)4], 

(91 + ( 0  2 = -4 [a l0 )  l A 0)2 q-a2(0) 1A 0)4 -- 0)2 A 0)3) -l~a30) 3 A 0)4], (3.11) 

(9~ = --2[a20) 1 A 0)2 + a3(0)1 A 0)4 _ 0)2 A 0)3) + a40)3 A 0)4]. 

Similarly, computing the components of  the curvature form 6)fl of  the fiber bundle Eft, we 
obtain 

(92 = 2[b00)l /x 0)3 if_ bl (0)1 A o94 q- 0)2 A 0)3) if_ b20)2 A 0)4], 

(91 - 6 ) 2  = -4[b l  o)j A ~°3 if-b2(0)1A 0)4 q- 0)2 A 0)3) q- b30)2 A 0)4]' (3.12) 

(92 I : -2[b20) 1 A 0)3 -F b3(0) 1 A 0)4 + 0)2 A 0)3) if_ b40)2 A 0)4]. 

Eqs. (3.11) and (3.12) show that the tensor of  confi)rmal curvature of  the structure 
C 0 ( 2 ,  2) is decomposed into two subtensors Cc~ = {au} and CI~ = {bu}, u = O, 1, 2, 3, 4, 

which are the curvature tensors of  the isotropic fiber bundles Ea and E~. 
For the C 0 ( 2 ,  2)-structure both these tensors are real and independent of one another. 

If  one of  the subtensors C,~ and C¢~ vanishes, then the C O (2, 2)-structure is called con- 
formally semiflat. If  both subtensors, C,~ and C/~, vanish, then the tensor of  conformal 
curvature of the C 0 ( 2 ,  2)-structure also vanishes, and the C 0 ( 2 ,  2)-structure itself be- 

comes conformallyflat, i.e. it is locally isomorphic to the structure of the pseudoconformal 
space C 4. 

4. The curvature forms of the C O (1, 3)- and C O (4)-structure 

4.1 

We now consider the pseudoconformal C O(1, 3)-structure on a real four-dimensional 

manifold M. As in Section 1, we assume that the tangent spaces Tx(M) to the manifold 
M are complexified, i.e. they are complemented to CTx(M)  = Tx ® C. But in the space 
CT~ (M), we consider only those linear transformations which preserve their real subspaces 

Tx, and also we considered the symmetry correspondence (the complex conjugacy) with 

respect to these subspaces. 
By means of transformations of  this kind, the fundamental form of the C O (1, 3)-structure 

can be reduced to the form (1.8) in complex coordinates related by condition (1.14). 
In these coordinates, on the C O ( I ,  3)-structure, Eqs. (3.2), (3.6), (3.7) and (3.8) are still 

valid but some of differential forms occurring in these equations are complex. 
After some computation, from exterior equations obtained by differentiation of relations 

(1.14) by means of structure equations (3.6), one can find the following relations for the 

1 -forms Oj : 

-1 -2  _02,  -3 ~__ 02 , -1 o2= o. o3 (4.1) 

Eqs. (4.1) show that the complex forms Oj occurring in them are expressed in terms of 
precisely six linearly independent forms. This number is equal to the number of  parame- 
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ters on which the Lorentz group depends. These six forms are real invariant forms of the 

group SO(I,  3). For 09 = 0, the forms Oj connected by relations (4.1) define a complex 
representation of this group. 

Since the form K occurring in Eq. (2.2) is real (this form is an invariant of the real group 
It of homotheties), it follows from this equation and (1.14) that 

091 A (~01 --  ~1 ) -~- 092 A (~2 --  ~3)  -]- 093 A (~03 --  ~2)  -~- 094 A (~4 --  ~4)  = 0. (4.2) 

Comparing Eqs. (4.3) with relations obtained from Eq. (4.1) by means of Eqs. (3.7) and 
(3.8), one can show that 

and 

~1 = ~1, ~ 2 = @ 3 ,  ~4  = @4- (4.3) 

bu = au. (4.4) 

Eqs. (4.3) show that the forms ~ol and ~o4 are real, and the forms ~P2 and ~03 are complex 
conjugates. For 09 = 0, these forms define a complex representation of the group T(4) of 
parallel translations in the compactified tangent space Sx (M). 

Finally, Eqs. (4.4) show that the curvature tensors Ca and C # of the isotropic fiber bundles 
Ea and E# of the CO(I,  3)-structure are complex conjugates: -C~ = Ca. This matches 
the fact proved in Section 1 that the isotropic fiber bundles E(~ and E# of the CO( l ,  3)- 
structure are complex conjugates themselves: E~ = Ea. Similarly, the forms O~ and O~ 
of this structure are also complex conjugates: O# = Oa. 

It follows that if one of the tensors Ca or C~ of the CO(I ,  3)-structure vanishes, the other 
one vanishes too. This implies that the C 0 (1, 3)-structure cannot be conformally semiflat 
without being conformally flat. 

4.2 

For the proper conformal structure CO(4), the fundamental form again can be reduced 
to the form (1.8) in complex coordinates related by condition (1.1 8). 

In these coordinates, on the CO(4)-structure, Eqs. (3.2), (3.6), (3.7) and (3.8) are again 
valid. 

From exterior equations obtained by differentiation of relations (1.1 8) by means of struc- 
ture equations (3.6), one can find the following relations for the 1-forms Oj: 

0 ~ + 0 ] : 0 ,  0 2 2 + 0 ~ : 0 ,  0 1 2 + 0 ~ : 0 ,  0 3 + 0 ~ : 0 .  (4.5) 

It follows again that the complex forms Oj on the C O (4)-structure occurring in (4.5) are 
expressed in terms of precisely six linearly independent forms, and for w = 0, these forms 
are invariant forms of the group SO(4). 

Further, by means of Eqs. (1.18), (2.2), (3.2), (3.6), (3.7), (3.8) and (4.5), one can prove 
that on the C O (4)-structure, the following relations hold: 

~4  : qgl, ~3 = --~02, (4.6) 
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a0 = a 4 ,  al  ----- --a3, a2 = a 2 ,  

bo----b4, bl -----b3, b2 = b 2 .  
(4.7) 

Relations (4.6) show that there are two independent forms among the forms 99i. For 

example, the forms ~01 and ~02 can be taken as independent forms. For w = 0, they determine 

a complex representation of  the group T(4) of  translations in the space Sx (M).  

From relations (4.7) it follows that the curvature tensors C~, and C~ of  the isotropic 

fiber bundles E,~ and Et~ of the conformal structure C O (4) are independent of  one another 

but satisfy the conditions Cu = C,r and C~ = C~. Of course, this corresponds to the 

self-conjugacy of  the isotropic fiber bundles Ec~ and Et~ of  the proper conformal structure 

CO(4) :  Ec~ = E~ and E/~ = E/~ noted in Section I. 

Since the tensors Ca or C¢~ are independent of one another, the C 0 (4)-structure can be 

t~- or fl- semiflat without being conformally flat. 

5. The hodge operator in four-dimensional conformal spaces 

5.1 

The Hodge tensor on an oriented Riemannian manifold (M, g) is constructed by means 

of  its metric tensor g and the discriminant tensor e. If dim M = 4 and el, i -- 1,2, 3, 4, 

compose a basis in the tangent space Tx (M), then 

gij = g(ei ,  e j) ,  eijkl = V(e i ,  ej ,  ek, el) = ~ Eijkl, (5.1) 

where V (ei, e j ,  ek, et) is the volume of  the parallelepiped constructed on the vectors ei, e j ,  ek 

and et, and 

~Sijkl = 

1 if i, j ,  k, l is an even permutation of  the indices l, 2, 3, 4, 

- 1 if i, j ,  k, l is an odd permutation of  the indices 1,2, 3, 4, 

0 if at least one pair of  these indices coincides. 

We assume that V(el ,  e2, e3, e4) > 0. 
The Hodge tensor is defined by the formula 

hij kl = eijpq gpk gql, (5.2) 

where g'g is the inverse tensor of  the tensor gij. 
It is easy to prove that the Hodge tensor is conformally invariant, i.e. it is not changed 

under a conformal transformation of  the metric g: g --~ ~g. 
The Hodge tensor defines the linear operator on the six-dimensional space A 2 of exterior 

quadratic forms over the manifold M, dim M = 4: 

h " A 2 --~ A 2. 
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For an exterior quadratic form ot = lol i jo)i  AO) j C A 2, the form/3 = h(c0 = ½/3ijO) i AO) j 

is defined as follows: 

/3ij = hijkl otkl . 

This operator is called the Hodge operator and often is denoted by the symbol . : /3  = *(c0. 

We note the following properties of  the Hodge operator: 
1. The Hodge operator is symmetric since the tensor eijkt is symmetric with respect to the 

pair of  bivector indices 

eijkl ~ eklij.  

2. The square o f  the Hodge operator satisfies the relation 

h 2 = sign (det g) • Id, 

where Id is the identity operator in A 2. 

Note that for dim M = 4, the sign of det g is preserved under transformations of the basis 

{ei }. The sign also is preserved under multiplication of the quadratic form g by a factor 
~r(x) ~ 0. But from expressions (1.4)-(1.6) of  the quadratic form g in a specialized 

frame one can see that for the CO(4) -  and CO(2 ,  2)-structure, de tg  > 0, and for the 
C O ( I ,  3)-structure, de tg  < 0. By virtue of  this 

h2(~r) = Id (5.3) 

for the CO(4) -  and C 0 ( 2 ,  2)-structure, and 

h2(cr) = - I d  (5.4) 

for the C O ( l ,  3)-structure. 

3. It follows from Eq. (5.3) that for the C O (4)- and C O (2, 2)-structures, the Hodge operator 
has two real triple eigenvalues X 1 = 1 and ~-2 = - 1 to which there correspond two real 
three-dimensional eigensubspaces in the space of 2-forms A 2, so that 

A 2 = A2+ ~ A2_, (5.5) 

where A 2 are the eigensubspaces corresponding to these eigenvalues. 
4. It follows from Eq. (5.4) that for the C O ( l ,  3)-structure, the Hodge operator has two 

complex conjugate eigenvalues )~1 = i and X2 = - i .  Formula (5.5) is still valid but the 
subspaces A2+ and A 2 - are complex conjugates. 

For four-dimensional conformal structures of  all three types, the eigensubspaces of  the 
Hodge operator corresponding to the eigenvalue ~.1 are called self-dual, and the eigensub- 
spaces of  the Hodge operator corresponding to the eigenvalue ,k2 are called anti-self-dual 
(cf. [AHS 78]). 

5.2 

We will now compute the components of the Hodge tensor for the C O (2, 2)-structure 
assuming that the tangent space Tx(M) is referred to an isotropic frame {el], i = l, 2, 3, 4, 
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in which its fundamental form (1.1) has the form (1.8). In such a frame, the matrix of  

coefficients of  the form (1.1) and its inverse matrix can be written in the form (3.1). 

The Hodge tensor is computed by formula (5.2) where now we have eijkl = 6ijkl. AS a 
result, the matrix of  its components has the form: 

(1 0 0 0 

0 0 0 0 

0 0 - 1  0 

0 0 0 --1 

0 - 1  0 0 

0 0 0 0 

(h) = 

0 0 ' 

- 1  0 

0 0 

0 0 ' 

0 0 

0 l 

(5.6) 

where the bivector indices (i, j )  are ordered as follows: 

(1,2), (2, 3), (3, 1), (2,4),  (1,4),  (3, 4). 

As can be expected, the matrix of  the operator h is symmetric. 

From (5.6) it follows that the characteristic polynomial of  the operator h can be written 

in the form 

det(h - ~. Id) = (1 - )~)3(1 + ~.)3. 

Thus, as can be predicted, the Hodge operator has two real triple eigenvalues )~l = 1 and 

).2 ----- - - 1 .  

As usual, the eigenspaces of  the operator h can be found from the equation 

h(u )  = ),u, 

where 01 ¢ A 2 and )~ = 4-1. It follows that to the eigenvalue ~.l = 1, there corresponds the 

eigenspace determined by the equations 

0131 ~--" 0 ,  0114 4- 0123 =- 0 ,  0124 = 0, (5.7) 

and to the eigenvalue ~-2 ---- - 1 ,  there corresponds the eigensubspace A 2 _ defined by the 

equations 

0112 = 0 ,  0114 --  0123 ~- 0,  0134 ~-- 0 .  ( 5 . 8 )  

Thus, the forms 

co I A o) 2, col A o) 4 --  092 A 0) 3 , 0)3 A 094 (5.9) 

form a basis of  the space A2+, and the forms 

COl ACO 3, COl A C O 4 4 - C O 2 A o ) 3 ,  co2 ACO4 ( 5 . 1 0 )  

form a basis of  the space A2_. 
Consider further the proper conformal structure C O (4). As we have noted in Section 1, 

its fundamental form (1.1) also can be reduced to the form of (1.8) in complex coordinates 



72 M.A. Akivis/Journal of Geometry and Physics 21 (1996) 55~80 

0)i connected by conditions (1.18). Thus, the basis forms of the eigensubspaces A 2 and 
A 2 _ of the Hodge tensor are also complex forms satisfying the conditions 

0)1 A0)2 = 0 ) 3  A0)4, 0)1A 0)4 _ 0)2 A 0)3 = _(0)1 A0)4 _0)2 A0)3) (5.11) 

and 

601 A0)3 = 0)2 A 0)4 ' 0 )1A 0)4 _1_ 0)2 A W3 = _ ( 0 ) 1 A  0)4 _F 0)2 A 0)3). (5.12) 

This means that the self-dual and anti-self-dual eigensubspaces A 2 and A 2 o f  the Hodge 
--2 --~2 A2 ' tensor o f  the CO(4)-structure satisfy the conditions A+ = A 2 and _ = _ i.e. they 

are self-conjugate. 
For the conformal structure C O (1, 3), the fundamental form (1.1) can be reduced to the 

form of (1.8) in complex coordinates satisfying conditions (1.18). Thus, the complex basis 
forms of the eigensubspaces A 2 and A 2 of the Hodge tensor satisfy the conditions 

0)1 A 0) 2 = 0)1 A 0)3, 0)3 A 0)4 = 0)2 A 0)4, 
(5.13) 

0)1 A0)4 _o)2 A0)3 = 0)1 A0)4 +o)2 A0)3, 

i.e. they are complex conjugates. Thus the eigensubspaces A 2 and A 2 - o f  the Hodge tensor 
--2 = A  2 of  the C O ( I ,  3)-structure are complex conjugates themselves: A+ _ . 

5.3 

Now we will return to the study of the curvature forms of four-dimensional conformal 

structures. As we proved in Section 3, for the CO(2, 2)-structure, these forms decompose 
into two groups Oa and 69t~. The first group is formed by the curvature forms of the isotropic 

fiber bundle Ea, and the second one by the curvature forms of the isotropic fiber bundle 
E~. The components of these forms can be calculated by formulas (3.11) and (3.12). 

Comparing formulas (3.11) and (3.12) with the basis forms (5.10) and (5.11) of the 
eigensubspaces A 2 and A 2 of the Hodge operator of the CO(2,  2)-structure, we arrive at 

the following result: The curvature form 0~ o f  the isotropic f iber bundle Ea o f  the C 0 (2, 2)- 
structure belongs to the eigensubspace A 2 o f  the Hodge operator, i.e. it is self-dual, and 

the curvature form 6)1~ o f  the isotropic fiber bundle E~ belongs to the eigensubspace A 2, 

i.e. it is anti-self-dual. 

The curvature forms of the isotropic fiber bundles Ea and E~ of the conformal structures 
C O (4) and C O (1, 3) enjoy similar properties since in the appropriate complex coordinates, 

--2 
they have the same form (3.1 1) and (3.12). Moreover, to the relations A+ =- A 2 and 

--~2 _ = A2 _ between eigensubspaces o f  the Hodge operator o f  the C O(4)-structure, there 

correspond the relations Ea = E~, -E~ = E[~ and-Ca = Ca, -C~ =- C~ between its 

isotropic f b e r  bundles and their curvature tensors (see Sections 1 and 4). Similarly, to 
--2 = A  2 the relation A+ _ between eigensubspaces o f  the Hodge operator o f  the C O ( I ,  3)- 

structure, there correspond the relations E---~ = E3 and -Ca = C3 between its isotropic fiber 
bundles and their curvature tensors (see again Sections 1 and 4). 
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Finally, we consider the semiflat four-dimensional conformal structures. If the curvature 

tensor Ct~ of the fiber bundle Et~ vanishes, then its curvature form belongs to the self-dual 

eigensubspace A 2 of the Hodge operator. This is the reason that such structures are called 

self-dual. On the other hand, if the curvature tensor C,~ of the fiber bundle Ec~ vanishes, then 
its'curvature form belongs to the anti-self-dual eigensubspace A 2 - of  the Hodge operator. 
This is the reason that such structures are called anti-self-dual. 

Note that the C O ( 1,3)-structure cannot be self-dual or anti-self-dual without being con- 
formally flat. This result immediately follows from the fact that for the C O (1, 3)-structure, 

Ct~ = C~,. 

6. Completely isotropic submanifolds of four-dimensional conformal structures 

6.1 

The tensor of  conformal curvature of  the conformal structure CO(p, q) defines the 
quadratic form 

C(p) = Cijklpij p kl 

in the bivector space V 2 associated with the tangent space Tx (M) to a manifold endowed 
with CO(p,  q)-structure. We will call the quadratic form C(p) the relative conformal 
curvature of the bivector p. 

Let us compute the quadratic form C (p) for the C O (2, 2)-structure. Taking into account 

that the essential components of  the conformal curvature are expressed by formula (3.10), 

we find the following expression for C(p) :  

IC(p)  = ao(p12)2 q_ 2alp12(p14 _ p23) q_ a212p12p34 + (p14 _ p23)2] 

+2a3p34(p14 _ p23) + a4(p34)2 q_ bo(p13)2 + 2bl p13(p14 q_ p23) 

q_b2[_2p13p42 q_ (p14 --b p23)2] _ 2b3p42(p14 q_ p23) -b b4(p42) 2. (6.1) 

Next, we find the values of  the form C(p) for isotropic bivectors belonging to ~- and 

fl-plane generators of the isotropic cone Cx of the C0(2,  2)-structure. or-generators of the 
cone Cx are determined by the system of equations (1.11). Thus a bivector belonging to the 

or-plane u(L) is determined by the vectors 

~. = e3 - )~el, r/~. = e4 - )~e2. 

Hence the coordinates of  the bivector pz = ~z A r/x are the minors of  the matrix 

( ;  01 
-)~ 0 ' 

i.e. they are 

p12 = 3 2 ,  p13 = 0 ,  p 1 4 = _ ~ ,  p23 =~ . ,  p34___ 1, p42 = 0 .  
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Substituting these expressions into Eqs. (6.1), we find that 

lC(pz)  = a0)~ 4 - 4alL 3 + 6a2,k 2 - 4a3L + a4 := Ca(L). (6.2) 

In exactly the same way, for the bivector Pu = ~u A Ou belonging to a/Lplane determined 
by the system of equations (1.12) we obtain 

1C(p~) = b0/z 4 - 4bl/z 3 + 6b2# 2 - 4b3/z + b4 := C/~(#). (6.3) 

Expressions (6.2) and (6.3) show that the relative conformal curvature of the isotropic or- 
and ~6-bivectors is expressed by the polynomials of fourth degree whose coefficients are 
the components of the subtensors Ca and C~ of the tensor of conformal curvature of the 
C O (2, 2)-structure. 

The isotropic bivectors for which relative conformal curvature vanishes, i.e. for which 
Ca (k) = 0 or Ct~ (/z) = 0, are called the principal isotropic bivectors. 

Since polynomials (6.2) and (6.3) are of fourth degree, it follows that in general, the 
isotropic cone Cx carries four principal o~-planes and the same quantity of principal 13- 
planes if we count each of these planes as many times as its multiplicity. 

If a C0(2,  2)-structure is ot-semiintegrable, then Eq. (6.2) becomes an identity, and 
all a-planes of the cones Cx are principal planes. Similarly, for a fl-semiflat C O (2, 2)- 
structure, all/~-planes of the cones Cx are principal planes. Finally, for a conformally fiat 
CO(2, 2)-structure, all its plane generators of the cones Cx are principal planes. 

6.2 

A two-dimensional submanifold V of the manifold M endowed with a pseudoconformal 
CO(2, 2)-structure is called completely isotropic if all its tangent subspaces Tx(V) are 
isotropic planes. If all of them belong to the isotropic fiber bundle Ea, then the isotropic 
submanifold is denoted by Va, and if all of them belong to the isotropic fiber bundle Eta, 
then the isotropic submanifold is denoted by V#. 

The submanifold Va is determined on M by the system of equations (1.11). On this 
submanifold, the 1-forms 09 3 and 0) 4 a re  independent. Taking the exterior derivatives of 
Eqs. (1.11), we obtain the system of equations 

0~. A O93 = 0 ,  0X A 094 ~ 0 ,  (6.4) 

where 

O~. := d L +  L(0~ + 0 2) - 0J + L2O 3. (6.5) 

From (6.4) it follows that on the submanifolds V~ 

0z = 0. (6.6) 

By taking the exterior derivative of this equation, excluding dL, and setting the coefficient 
of the product 0)3 A 0)4 equal to zero, we obtain the equation 

a0  X4 - -  4a1~. 3 + 6a2~. 2 - 4a3~. + a4 = 0 ,  (6.7) 
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whose left-hand side coincides with the polynomial Ca (L). 

In exactly the same way, taking the exterior derivatives of  Eqs. (1.12) which determine 
the submanifolds V~, we arrive at another Pfaffian equation: 

0 u := d/z +/z(O~ - 02 ) - 01 + . 2 0 2  ---- O. (6.8) 

From this equation, just as above, we obtain the following algebraic equation: 

b0/z 4 - 4b1# 3 + 6b2# 2 - 4b3/z + b4 = 0, (6.9) 

whose left-hand side coincides with the polynomial C~(/~). 

From Eqs. (6.7) and (6.9) it follows that if on a manifold M endowed with a CO(2 ,  2)- 
structure, there are completely isotropic submanifolds V~ or V~, then all tangent subspaces 
of these submanifolds are principal or- or E-planes, respectively. 

Pfaffian equations (1.11) and (6.6) determine a distribution Zi(~) of  two-dimensional 
elements on the five-dimensional fiber bundle E,~. If this distribution is involutive, then it 

has a three-parameter family of integral surfaces, which are projected onto the manifold M as 
completely isotropic two-dimensional submanifolds V~. But the condition of involutivity 

of  the distribution Zi(~) is complete integrability of  the system of equations (1.1 1) and 

(6.6), and this condition reduces to the identically satisfying Eq. (6.7). The latter condition 
is equivalent to the vanishing of the subtensor C,~ of the fiber bundle E~, i.e. to the c~- 
semiflatness of the CO(2 ,  2)-structure. A similar conclusion is valid for a distribution 
Zi(/3) determined by the system of equations (1.12) and (6.8). 

This implies the following result: 

The conformal structure C 0 (2, 2) is ot-semiflat if and only if it carries a thme-parameter 
family of completely isotropic submanifolds Vc, and it is fl-semiflat if and only if it carries 
a three-parameter family of completely isotropic submanifolds Vt3. The conformal struc- 
ture C0(2,  2) is conformally flat if and only if it carries two three-parameter families of 
completely isotropic two-dimensional submanifolds. 

The conformally flat C O (2, 2)-structure is locally equivalent to the structure of the four- 

dimensional pseudoconformal space C 4, and in turn, the latter space can be mapped onto 
a hyperquadric Q2 4 of a projective space pS. This mapping is called the Darboux mapping. 

Under this mapping, to completely isotropic submanifolds of the conformally flat C 0 (2, 2)- 
structure, there correspond two-dimensional plane generators of the hyperquadric Q4. 

6.3 

Let us assume now that Eq. (6.7) does not vanish identically. Then it has four roots 

)~p, p = 1, 2, 3, 4, if we count each of these roots as many times as its multiplicity. Each 
of these roots determines a cross-section Sp(et) : M --+ Ec, which is a principal isotropic 
distribution Ap(a) of the fiber bundle Ea. 

The principal distributions Zip(a) are, generally speaking, not integrable, because the 
root ~.p of  Eq. (6.7) may not satisfy Eq. (6.6). However, if this root satisfies Eq. (6.6), 
then the distribution Zip (or) is integrable and determines an isotropic foliation Fp (or) on the 
manifold M. 
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In order to find an integrability condition of the principal distribution Ap(ot), we will 
suppose that ~. = ~.p in (6.7), and differentiate the resulting identity. Replacing d~. with the 

help of  (6.6) and making use of (6.6), we obtain 

dCa (~.) + 2C,~(L)(x + O~ + 02) + 4LCaO00~ 

= (aoi~.4-4al i~ .3+6azi~.  2 -4a3i~.-k-a4i)w i = 0 ,  i = 1 , 2 , 3 , 4 ,  

where aui and further bui, u = 0, 1, 2, 3, 4, are the covariant derivatives of  the components 

of  the tensors Ca and Ct~, respectively. Since the forms 09 i a r e  linearly independent, a root 

Lp o f  Eq. (6.7) determines an integrable distribution Ap(ot) i f  and only i f  it satisfies the 

equations 

aoi)~ 4 -- 4alia. 3 Jr- 6a2i~. 2 -- 4a3i)~ + a4i = O. (6.10) 

In exactly the same way, the principal isotropic distribution Ap(fl),  determined by a root 

#p o f  Eq. (6.9), is integrable i f  and only i f  this root satisfies the equations 

boi# 4 - 4blg/Z 3 + 6bz//z 2 - 4b3ilz d- b4i = O. (6.11) 

We deduce some consequences of  this result. 

1. Apseudoconfo rmalCO(2 ,  2)-structureiscalledot-semirecurrentifi tstensorCa satisfies 
the condition 

aui = kiau (6.12) 

and [3-semirecurrent if its tensor Ct~ satisfies the condition 

bui = libu, (6.13) 

where u = 0, 1, 2, 3, 4 and i = 1, 2, 3, 4. A pseudoconformal C 0 ( 2 ,  2)-structure is 
called recurrent if 

VC = crC, (6.14) 

where C is the tensor of  conformal curvature, and cr is a 1-form (cf. [AM 67]). 
From Eqs. (6.10) and (6.11) it follows that the C 0 (2, 2)-structure is ot-semirecurrent 

if  and only i f  all four  o f  its principal distributions Ap(a)  are integrable ; this structure is 

fl-semirecurrent if  and only if  all four  o f  its principal distributions Ap (fl) are integrable; 

and finally, this structure is recurrent i f  and only i f  all eight o f  its principal distributions 
are integrable. 

2. Every multiple root o f  Eq. (6.7) or (6.9) determines a principal isotropic foliation on 
the manifold M. 

For example, let L be a multiple root of  Eq. (6.7). Using an admissible transformation 
of the adapted frame, we can set this root equal to zero, L = 0. Then from (6.7) we 
conclude that a3 = a 4  = 0. In view of this, we obtain a4i = O. But then the root ~. = 0 
satisfies Eqs. (6.10), and the distribution defined by it is integrable. 
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6.4 

Consider now a C O (1, 3)-structure. As we have proved earlier (see Eqs. (4.4)), for such 
a structure the coefficients of the polynomials Ca (A) and Ct~ (/z) are complex conjugate. 
By virtue of this, the roots of these polynomials are also complex conjugates. Thus, the 

principal two-dimensional directions on the isotropic bundles Ea and Ets (which also satisfy 
the condition E¢~ = E~) are also complex conjugate. Moreover, two complex conjugate 

two-dimensional principal directions of the bundles Ea and Ep determined by the roots 
Ap and #p --- Ap of Eqs. (6.7) and (6.9) intersect one another along a real generator of the 

cone Cx. This generator has the same direction as the vector ~p, p = 1,2, 3, 4, defined by 

formula (1.16) for ;~ = A e. Thus, the isotropic cone Cx of the CO(l ,  3)-structure carries 
four real principal isotropic directions. 

Let us prove that the integral curves of each of four families of real principal directions 
on a manifold M with a CO(l ,  3)-structure are isotropic geodesics of the manifold M. 

Note first that in general, the geodesics of conformally equivalent Riemannian metrics 
generating a conformal structure on the manifold M are not conformally invariant. However, 

it is possible to prove that the isotropic geodesics on M enjoy this property. 
The equations of geodesics on a Riemannian manifold M can be written in the form 

d~ i + ~ioj = g~ i, (6.15) 

where ~i are coordinates of vectors tangent to the geodesics. For four-dimensional conformal 

structures, in the isotropic frame bundle the forms Oj satisfy relations (3.2), and by (1.16), 

the coordinates of isotropic vectors on the C O (1,3)-structure have the form: 

~1 = AA, ~2 = --A, ~3 = _~ ,  ~4 = 1, (6.16) 

where A is a complex parameter on the cone Cx. By virtue of (6.16), Eqs. (6.15) of isotropic 

geodesics on the C O (1,3)-structure can be written as follows: 

d(A2) - A02 I - X0~ = AX(x - 0~), 

- dX + X202 + 0~ = -A(tc - 02), (6.17) 

- dX + AA013 + 0J = --Atx + 02), 

- x0 , :  = K + 

By relations (4.1), which the forms Oj of the C O ( 1, 3)-structure satisfy, only two of Eqs. 
(6.17), for example, the second and the fourth, are independent. Excluding the 1-form x 
from the second equation by means of the fourth equations, we find that 

dA + A(0~ + 0 2 ) -  03 l +A203 = 0. (6.18) 

But this equation precisely coincides with Eq. (6.6) which the complex parameters A t, 
determining the principal directions on the isotropic cones Cx satisfy. This proves the result 

formulated above. 
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Note also that integral curves of the principal isotropic directions of the C O ( I ,  3)- 
structure form isotropic geodesic congruences on the manifold M. In general, the manifold 

M carries four such congruences. 
As we will see further, the real principal directions on the isotropic cones Cx of the 

C O(1, 3)-structure play an important role in the Petrov classification (see [Ch 83] or [PR 

86]) of  Riemannian metrics in general relativity. 

6.5 

In conclusion we consider a C O (4)-structure. By (4.7), Eq. (6.7) takes the form 

a0~. 4 -- 4al~. 3 + 6a2)~ 2 + 4~lL + ~0 = 0, (6.19) 

where a2 is a real number. If we take the complex conjugate values of  all terms of (6.19), 

we obtain 

a0 ~4 -- 4al ~3 -k- 6a2 ~2 + 4a l~  + a0 = 0. 

Comparing this equation with Eq. (6.19), we see that if ~.1 is a root of  Eq. (6.19), then the 

number ~-2 = - l / L 1  is also its root. It follows that the roots ~-1 and )~2 cannot coincide. 

Furthermore, if ~-I = Z3, then L2 = )~4. Thus, we have proved the following result: Eq. 

(6.19) has either four  distinct roots or two pairs o f  double roots; in the latter case the 

isotropic f iber bundle Ea carries two double principal distributions. However, since these 
distributions are complex, they do not define foliations on the real manifold M. 

By (4.7), for the isotropic fiber bundle E/~, the equation C~(#)  = 0 can be written in the 
form 

b0~ 4 - -  4bl/z 3 + 6b2# 2 + 4 b l #  + b0 = 0, (6.20) 

where b2 is a real number. By means of Eq. (6.20), we can prove the results on the principal 
distributions of  the isotropic fiber bundle E/~ similar to those we proved above for the 
principal distributions of  the isotropic fiber bundle E~. 

6.6 

For the C O ( I ,  3)-structure, Eqs. (6.7) and (6.9), which by (4.4) are complex conjugates 
of  one another, are connected with the classification of A.Z. Petrov of Einstein spaces. 

We remind the reader that the Einstein space is a four-dimensional pseudo-Riemannian 
manifold of  signature (1, 3) whose curvature tensor R~k l satisfies the condition 

1 8 ~ G  
Rjk -- ~ g j k R  = c2 Tij, (6.21) 

where Rjk = R~k i is the Ricci tensor, R = gjk Rjk is the scalar curvature of the Riemannian 
manifold, T i j  is the energy-momentum tensor, G is the gravitational constant, and c is the 
speed of light. Eq. (6.21) is called the Einstein equation. 
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In empty space, i.e. in a region of  space-time in which T/j = 0, the Einstein equation 
can be reduced to the form 

Rij = O. 

Thus, the curvature tensor of  this space coincides with the Weyl tensor: Rjk l = Cjk I. This 

follows from the expression of  the tensor Cjk ! in terms of R~k I, Rjk and R (see, for example, 
the book [Ch 83, Ch. 1, Section 7] or the paper [AK 93]). 

The classification of Einstein spaces is connected with the structure of  its tensor of  

conformal curvature. Hence this classification is of  a conformal nature. This classification 

was first constructed by Petrov in the paper [Pe 54] (see also [Pi 57]). This classification 

is presented in detail in many books in general relativity (see, for example, the books [Ch 

83, Ch. 1, Section 9; PR 86, Ch. 8]. However, to our knowledge, the relationship of  this 

classification with integrability of  principal isotropic distributions has not been considered 
before now. 

To give a geometric characterization of  Einstein spaces of  different types, we will also 

apply isotropic geodesic on the manifolds endowed with a C O ( I ,  3)-structure which we 
considered in Section 6.4. 

Since for the C O ( l ,  3)-structure, Eqs. (6.7) and (6.9) are complex conjugates, for clas- 

sification of  Einstein spaces it is sufficient to consider only one of these equations, for 

example, the first one. As a result, the Petrov classification can be presented in the form of 
the fl)llowing table: 

Petrov's type Roots of the equation 

C, , (Z )  = 0 

Characterization 

of principal 

distributions 

Characterization 

of  isotropic geo- 

desic congruences 

I 

II 

D 

III 

N 

~pT&)~q, p # q ,  p , q =  l , 2 , 3 , 4  

~.1 = ~-2 ~7 ~ ~-3, )~4; )~3 ~;& ~-4 

)~1 = )'-2 ~;& ~.3 ---- )~4 
~-I = X2 = ~.3 =~= 2'-4 

4 different of  4 simple 

general type 

1 double and 2 1 double and 2 

of general type simple 

2 double 2 double 

1 triple and 1 1 triple and 1 

of general type simple 

1 quadruple 1 quadruple 
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